
Feature Engineering and Classification Models for Partial
Discharge Events in Power Transformers

Jonathan Wang
Rice University
jw96@rice.edu

Kesheng Wu, Alex Sim
Lawrence Berkeley National

Laboratory
kwu@lbl.gov,asim@lbl.gov

Seongwook Hwangbo
Hyundai Electric & Energy Systems

Co., Ltd.
smhwangbo@hyundai-electric.com

ABSTRACT
To ensure the reliability of power transformers, they are monitored
for partial discharge (PD) events, which are symptoms of trans-
former failure. Our goal is to classify PDs to gain an understanding
of the location of failure. We develop a small set of features and a
stacking ensemble that outperform larger feature sets and other
models in both accuracy and variance.

1 INTRODUCTION
Power transformers are a key element of electric power infras-
tructures. While they have become more reliable, transformers are
still susceptible to failure. This work focuses on analyzing partial
discharge (PD), an internal arcing event that signals transformer
failure.

Certain types of PDs are correlated with different parts of the
transformer. Therefore, determining the type of PD provides a
rough location for the PD source. We can then install UHF sensors
around the rough position to collect PD signals to identify the
precise position of the PD for repair.

We present a small set of features that can efficiently represent
the PD data as well as a stacking ensemble model that can classify
PD types more accurately than existing methods. Our feature set
attains 99.31% accuracy with a Random Forest classifier, the best
tested single model. This accuracy is improved to 99.61% with our
stacking ensemble, which also achieves half the variance of single
models.

2 METHODS
The goal of our work is to classify four types of PD - corona, floating,
particle, and void. We accomplish this by:
• Extracting features from signal data
• Training machine learning model on features

Our data is 328 PD signals gathered by the transformer sensors
labelled as 85 corona, 99 floating, 80 particle, and 64 void. Each data
sample contains 3840 magnitude points over one second. These
points are broken up into 60 cycles of 64 phases. Figure 1 shows
heatmaps of each type of PD. The x and y axes indicate the phase
and cycle and the color indicates the magnitude at that time.
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(a) Corona PD
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(b) Floating PD
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(c) Particle PD
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(d) Void PD

Figure 1: Heatmaps of Sample PDs

50000 0 50000 100000 150000 200000
Total Magnitude

0

50

100

150

200

250

300

M
a
x
im

u
m

 M
a
g
n
it

u
d
e

corona
floating
particle
void

(a) Total and Maximum Magni-
tude

(b) Maximum Magnitude and
Longest Empty Band

Figure 2: PD Samples Plotted along Features

Since using all 3840 magnitude points as features would be too
costly to model, we want to extract a smaller set of features from
the signals.

The set of features that we examine is:
• the maximum magnitude out of all 3840 points
• the total magnitude of all 3840 points
• the length of the largest empty phase band

The length of the largest empty band quantifies the distribu-
tion of the signal. We define an empty band as consecutive phases
without significant magnitude (40% of maximum magnitude).

These features are plotted with the PD type in Figure 2, which
shows that the data points are almost separable based on these
three features.
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Table 1: Prediction Accuracy ± Standard Deviation by PD Type

Classification Method PD Type TotalCorona Floating Particle Void
SVM 0.9915 ± 0.014 1 ± 0 0.9954 ± 0.014 0.9789 ± 0.042 0.9923 ± 0.010

Logistic Regression 0.9997 ± 0.002 0.9882 ± 0.024 0.9680 ± 0.035 0.9809 ± 0.024 0.9847 ± 0.011
Random Forest 0.9905 ± 0.014 1 ± 0 0.9954 ± 0.012 0.9832 ± 0.035 0.9931 ± 0.009

Gradient Boosting 0.9672 ± 0.030 1 ± 0 0.9862 ± 0.024 0.9785 ± 0.035 0.9838 ± 0.012
Fuzzy SVM (FSVM) 0.9859 ± 0.023 1 ± 0 0.9943 ± 0.017 0.9712 ± 0.029 0.9893 ± 0.011
Best Stacking Model 0.9985 ± 0.007 1 ± 0 0.9984 ± 0.008 0.9836 ± 0.021 0.9961 ± 0.005

We test several classification methods, including Gradient Boost-
ing, Random Forest, Logistic Regression, SVM (Support Vector Ma-
chine) and FSVM (Fuzzy Support Vector Machine). For each of our
experiments, we split our dataset into training and validation sets
(60:40). We train the models on the training set and score prediction
accuracy based on the validation set. This process is repeated 100
times for each model and the results are averaged to achieve more
consistent results.

Certainmodels predict certain PD types better. To take advantage
of the strengths of each model, we implement a stacking ensemble
classifier, which is comprised of two levels of classification. We
train a set of level one classifiers as in our previous experiments.
The outputs of these classifiers are then used as features for the
level two classifier. To build an optimized model, we test several
parameters, such as what classification methods to use in each level
and what features to extract from the level one classifiers, as well
as whether to use the probabilities or prediction from the level
one classifiers and whether to include the original features in the
stacking model.

3 EXPERIMENTAL RESULTS
Table 1 compares the performance of each model for each PD type.
We can see that SVM, FSVM, and Random Forest are fairly strong
classifiers overall. However, Logistic Regression performs better in
classifying only corona PDs. In addition, over multiple experiments,
SVM and FSVM occasionally misclassify floating PDs, although
this happens very rarely and is not represented in the table. In
contrast, Random Forest and Gradient Boosting have no variance
in the classification of floating PDs.

Due to the unique strengths of the various models, we combine
them into an ensemble using stacking. We try several parameter
variations of the stacking classifier, but our selection is based on
the observation that Logistic Regression has much better corona
classification scores, and Random Forest and Gradient Boosting
have more consistent floating classification scores. The parameters
are the classifiers to stack, the model to stack with (meta-classifier),
whether to use the model probabilities as features, and whether
to include the original features in the stacked model. The classi-
fiers that we consider are Gradient Boosting (GB), SVM, Logistic
Regression (LR), and Random Forest (RF).

The resulting stacking model uses 2 SVMs, Logistic Regression,
and Random Forest provides the best results. This classifier is shown
in Figure 3. Although it does not achieve the maximum corona
accuracy of Logistic Regression, it offers the best total accuracy.

Figure 3: Diagram of Final Stacking Classifier

This model outperforms any single classification model in terms of
prediction accuracywith a total accuracy of 0.9961whereas Random
Forest, the best single model, has an accuracy of 0.9931. For each PD
type, the stacking model outperforms Random Forest, particularly
for corona PDs, where Random Forest scores 0.9905 compared to the
0.9985 of the stacking model. The stacking ensemble also reduces
the variance of the total accuracy by half and obtains the best
variance for each PD type. The total variance for each single model
hovers around 0.010, while the stacking model only has a total
variance of 0.005.

4 CONCLUSION
As a result of our work, we determine an efficient feature set that
can be used to accurately classify PD events. We also present a
stacking ensemble strategy that combines the strengths of several
prediction models to outperform existing classification methods,
consistently achieving more than 99% accuracy with low variance.
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